top of page
Webstite background 3.tif




69. Poacic Acid, a Plant-Derived Stilbenoid, Augments Cell-Wall Chitin Production, but Its Antifungal Activity Is Hindered by this Polysaccharide and by Fungal Essential Metals. Yona, Adi; Fridman, Micha. Biochemistry, 2024, 63, 8, 1051–1065.

68. Enzymatic Activity Profiling Using an Ultra-Sensitive Array of Chemiluminescent Probes for Bacterial Classification and Characterization. Shelef, Omri; Kopp, Tal; Tannous, Rozan; Arutkin, Maxence; Jospe-Kaufman, Moriah;  Reuveni, Shlomi; Shabat, Doron; Fridman, Micha. journal of the American Chemical Society, 2024, 146, 8, 5263–5273.

67. Reshaping Echinocandin Antifungal Drugs To Circumvent Glucan Synthase Point-Mutation-Mediated Resistance.  Jospe-Kaufman, Moriah; Ben-Zeev, Efrat; Mottola, Austin; Dukhovny, Anna; Berman, Judith; Carmeli, Shmuel; Fridman, Micha, Angewandete Chemie International Edition 2024, 63, 9, e202314728. 



66. Spirostrain-Accelerated Chemiexcitation of Dioxetanes Yields Unprecedented Detection Sensitivity in Chemiluminescence Bioassays. Tannous, Rozan; Shelef, Omri; Gutkin, Sara; David, Maya; Leirikh, Thomas; Liang, Ge; Jaber, Qais Z.; Zhou, Qingyang; Ma, Pengchen; Fridman, Micha; Spitz, Urs; Houk, Kendall N.; Shabat Doron. ACS Central Science2023, In Press

65. Chemiluminescent Duplex Analysis by Phenoxy-1,2-Dioxetane Luminophores with Color Modulation. Gutkin, Sara; Tannous, Rozan Jaber, Qais Z.; Fridman, Micha; Shabat Doron. Chemical Science2023, 14, 6953 - 6962.

TOC Figure2.png

64. Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers. David, Maya; Jaber, Qais Z.; Fridman, Micha; Shabat Doron. Chemistry, A European Journal2023, 29, 25, e202300422.


63. Deciphering the Biological Activities of Antifungal Agents with Chemical Probes. Fridman, Micha; Sakurai, Kaori. Angewandete Chemie International Edition 2023,  62,12,  e202211927.



62. Cationic, Steroid-Based Imidazolium Amphiphiles Show Tunable Backbone-Dependent Membrane Selectivity in Fungi. Wagner, Tristan; Elias, Rebecca; Roling Lena; Raj, Nikita; Gerke, Volker; Fridman, Micha; Glorius, Frank . ACS Infectious Diseases20228, 9, 1815–1822.


61. Echinocandins Localized to the Target-Harboring Cell Surface Are Not Degraded but Those Entering the Vacuole Are.  Jaber, Qais Z.; Logviniuk, Dana; Yona, Adi; Fridman, Micha. ACS Chemical Biology2022, 17, 5, 1155–1163.


60. Benzylic Dehydroxylation of Echinocandin Antifungal Drugs Restores Efficacy against Resistance Conferred by Mutated Glucan Synthase.  Logviniuk, Dana; Jaber, Qais Z.; Dobrovetsky, Roman; Kozer, Noga; Ksiezopolska, Ewa; Gabaldón, Toni; Carmeli, Shmuel; Fridman, Micha. Journal of the American Chemical Society2022, 144 (13), 5965–5975.

TOC artwork.tif

59. Fluconazole-COX Inhibitor Hybrids: A Dual-Acting Class of Antifungal Azoles.  Elias, Rebeca; Basu, Pallabita; Fridman, Micha. Journal of Medicinal Chemistry2022, 65 (3), 2361-2373.



58. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin. Ana  Colabardini, Cristina;  Wang, Fang;  Dong, Zhiqiang; Pardeshi, Lakhansing;  Campos Rocha, Marina; Henrique Costa, Jonas; dos Reis, Fernanda; Brown, Alec; Jaber, Qais Z.; Fridman, Micha; Fill, Taicia;  Rokas, Antonis; Malavazi, Iran; Wong, Koon Ho;  Henrique Goldman, Gustavo.  Genetics, 2021, 220(1), iyab183.

57. Azide‐Functionalized Derivatives of the Virulence‐Associated Sugar Pseudaminic Acid: Chiral Pool Synthesis and Labeling of Bacteria. Vibhute, Amol M.; Tamai, Hideki;  Logviniuk, Dana; Jones, Peter J.; Fridman, Micha; Werz, Daniel B. Chemistry A European Journal, 2021, 27 (41), 10595-10600.

TOC final.tiff

56. Design Guidelines for Cationic Pillar[n]arenes that Prevent Biofilm Formation by Gram-Positive Pathogens. Kaizerman-Kane, Dana; Hadar, Maya; Josef, Roymon; Logviniuk, Dana; Fridman, Micha; Yoram Cohen. ACS Infectious Diseases, 2021, 7 (3) 579–585.

TOC ACS INF 2021.png

55. Fresh Molecular Concepts to Extend the Lifetimes of Old Antimicrobial Drugs. Jaber, Qais, Z.;  Fridman, Micha. The Chemical Record, 2021, 21, 1–16.

54. Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. Bibi, Maayan; Murphy, Sarah; Benhamou, Raphael I.; Rozenberg, Alex; Ulman, Adi; Bicanic, Tihana; Fridman, Micha; Judith Berman. ACS Infectious Diseases, 2021, 7 (2), 377–389.


53. Luminescent Amphiphilic Aminoglycoside Probes for Study of Transfections.   Zimmermann, Alexander; Jaber, Qais Z.;  Koch, Johannes;  Riebea, Steffen; Valletc, Cecilia; Lozae,  Kateryna; Hayduka, Matthias; Steinbuch, Kfir B. Shirley K. Knauerc; Fridman, Micha;  Voskuhl, Jens. ChemBioChem2021, 22, 1-6.


52. Serum Prevents Interactions between Antimicrobial Amphiphilic Aminoglycosides and Plasma Membranes.   Logviniuk, Dana; Fridman, Micha. ACS Infectious Diseases,  2020, 12, 3212-3223.


51. Elevated Vacuolar Uptake of Fluorescently Labeled Antifungal Drug Caspofungin Predicts Echinocandin Resistance in Pathogenic Yeast. Jaber, Qais Z; Bibi, Maayan; Ksiezopolska, Ewa; Gabaldon, Toni; Berman, Judith; Fridman, Micha. ACS Central Science2020, 6, 1698-1712.


50. The Relationship Between the Structure and Toxicity of aminoglycoside antibiotics. Jospe-Kaufman, Moriah; Siomin, Liza; Fridman, Micha. Bioorganic & Medicinal Chemistry Letters2020, 30, 1-5. 


49. Bromopyrrole Alkaloids of the Sponge Agelas oroides Collected Near the Israeli Mediterranean Coastline.  Kovalerchik, Dimitry; Pal Singh, Ravindra; Schlesinger, Pnina; Shefer, Sigal; Fridman, Micha; Ilan, Micha; Carmeli, Shmuel. Journal of Natural Products2020, 83, 374-384.


48. Chemical Modifications Reduce Auditory Cell Damage Induced by Aminoglycoside Antibiotics. Louzoun Zada, Sivan; Ben Baruch, Bar; Simhaev, Luba; Engel, Hamutal; Fridman, Micha. Journal of the American Chemical Society2020, 142, 3077-3087.



47. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Elias, Rebecca; Benhamou, Raphael I.; Jaber, Qais Z; Dorot, Orly; Louzoun Zada, Sivan; Oved, Keren; Pichinuk, Edward; Fridman, Micha. European Journal of Medicinal Chemistry2019, 179, 779-790.


46. Guiding Drugs to Target- Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Louzoun Zada, Sivan; Jaber, Qais Z.; Fridman, Micha. Angewandte Chemie International Edition2019, 58, 2-13.



45. Fluorescent Tracking of the Endoplasmic Reticulum in Live Pathogenic Fungal Cells. Benhamou, Raphael I.; Jaber, Qais Z.; Herzog, Ido M.; Roichman, Yael; Fridman, Micha. ACS Chemical Biology2018, 13, 3325-3332.


44. Cationic Amphiphiles Induce Macromolecule Denaturation and Organelle Decomposition in Pathogenic Yeast. Jaber, Qais Z.; Benhamou, Raphael I.; Herzog, Ido M.; Ben Baruch, Bar; Fridman, Micha. Angewandte Chemie International Edition2018, 57, 16391-16395.


43. Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall. Louzoun Zada, Sivan; Green, Keith D.; Shrestha, Sanjib K.; Herzog, Ido M.; Garneau-Tsodikova, Sylvie; Fridman, Micha. ACS Infectious Diseases2018, 4, 1121-1129. 


42. Localizing Antifungal Drugs to the Correct Organelle can Markedly Enhance their Efficacy. Benhamou, Raphael I.; Bibi, Maayan; Berman, Judith; Fridman, Micha. Angewandte Chemie International Edition2018, 57, 6230-6235.


41. Bacterial-Derived Exopolysaccharides Enhance Antifungal Drug Tolerance in a Cross-Kingdom Oral Biofilm. Kim, Dongyeop; Liu, Yuan; Benhamou, Raphael I.; Sanchez, Hiram; Simón-Soro, Áurea; Li, Yong; Hwang, Geelsu; Fridman, Micha; Andes, David R.; Koo, Hyun. ISME Journal2018, 12, 1427–1442.

40. Increased Degree of Unsaturation in the Lipid of Antifungal Cationic Amphiphiles Facilitates Selective Fungal Cell Disruption. Steinbuch, Kfir B.; Benhamou, Raphael I.; Levin, Lotan; Stein, Reuven; Fridman, Micha. ACS Infectious Diseases2018, 4, 825-836.



39. Tuning the Effects of Bacterial Membrane Permeability through Photo-Isomerization of Antimicrobial Cationic Amphiphiles. Salta, Joana; Benhamou, Raphael I.; Herzog, Ido M.; Fridman, Micha. Chemistry A European Journal2017, 23, 12724-12728.


38. Structural Insights of Lincosamides Targeting the Ribosome of Staphylococcus aureus. Matzov, Donna; Eyal, Zohar; Benhamou, Raphael I.; Shalev-Benami, Moran; Halfon, Yehuda; Krupkin, Miri; Zimmerman, Ella; Rozenberg, Haim; Bashan, Anat; Fridman, Micha; Yonath, Ada. Nucleic Acids Research2017, 45, 17, 10284-10292.

37. The Role of Chemistry in Delivering the Next Antimicrobial Drugs. Fridman, Micha. Chem2017, 3, 8-14.

36. Real-Time Imaging of the Azoles-Class of Antifungal Drugs in Live Candida Cells. Benhamou, Raphael I.; Bibi, Maayan; Steinbuch, Kfir B.; Hamutal, Engel; Levin, Maayan; Roichman, Yael; Berman, Judith; Fridman, Micha. ACS Chemical Biology, 2017, 12, 1769−1777.


35. Characterization of Non-Dialyzable Constituents from Cranberry Juice that Inhibit Adhesion, Co-Aggregation and Biofilm Formation by Oral Bacteria. Neto, Catherine; Penndorf, Kelsey A; Feldman, Mark; Meron-Sudai, Shiri; Rones, Zichria; Steinberg, Doron; Fridman, Micha; Kashman, Yoel; Ginsburg, Isaac; Ofek, Itshak; Weiss, Ervin. Food and Function2017, 8, 1955-1965.



34. Effects of 5-O-Ribosylation of Aminoglycosides on Antimicrobial Activity and Selective Perturbation of Bacterial Translation. Herzog, Ido M.; Louzoun Zada, Sivan; Fridman, Micha. Journal of Medicinal Chemistry2016, 59, 8008-8018.


33. Phosphonium Pillar[5]arenes as a New Class of Efficient Biofilm Inhibitors: Importance of Charge Cooperativity and the Pillar Platform. Joseph, Roymon; Kaizerman, Dana; Herzog, Ido M.; Hadar, Maya; Feldman, Mark; Fridman, Micha; Cohen, Yoram. Chemical Communications2016, 52, 10656-10659. 


32. Antifungal Imidazole-Decorated Cationic Amphiphiles with Markedly Low Hemolytic Activity. Benhamou, Raphael I.; Steinbuch, Kfir B.; Fridman, Micha. Chemistry A European Journal2016, 22, 1148-1151.


31. Synthesis and Evaluation of Membrane Permeabilizing Properties of Cationic Amphiphiles Derived from the Disaccharide Trehalose. Shaul, Pazit; Benhamou, Raphael I.; Herzog, Ido M.; Louzoun Zada, Sivan; Ebenstein, Yuval; Fridman, Micha. Organic & Biomolecular Chemistry2016, 14, 3012-3015.


30. Cationic Pillararenes Potently Inhibit Biofilm Formation without Affecting Bacterial Growth and Viability. Joseph, Roymon; Naugolny, Alissa; Feldman, Mark; Herzog, Ido M.; Fridman, Micha; Cohen, Yoram. Journal of the American Chemical Society2016, 138, 754-757.


29. Mechanisms of Resistance to Membrane-Disrupting Antibiotics in Gram-Positive and Gram-Negative Bacteria. Steinbuch, Kfir B.; Fridman, Micha. MedChemComm2016, 7, 86-102.



28. Di-N-Methylation of Anti-Gram Positive Aminoglycoside-Derived Membrane Disruptors Improves Antimicrobial Potency and Broadens Spectrum to Gram Negative Bacteria. Benhamou, Raphael I.; Shaul, Pazit; Herzog, Ido M.; Fridman, Micha. Angewandte Chemie International Edition2015, 54, 13617-13621.


27. Exploring the Effects of Glycosylation and Etherification of the Side Chains of the Anti-Cancer Drug Mitoxantrone. Shaul, Pazit; Steinbuch, Kfir B.; Blacher, Eran; Stein, Reuven; Fridman, Micha. ChemMedChem, 2015, 10, 1528-1538.


26. One-Pot Chemoenzymatic Cascade for Labelling of the Epigenetic Marker 5-Hydroxymethylcytosine. Nifker, Gil; Levy-Sakin, Michal; Berkov-Zrihen, Yifat; Shahal, Tamar; Gabrieli, Tslil; Fridman, Micha; Ebenstein, Yuval. ChemBioChem2015, 16, 1857-1860.


25. Tobramycin and Nebramine as Pseudo-Oligosaccharide Scaffolds for Development of Antimicrobial Cationic Amphiphiles. Berkov-Zrihen, Yifat; Herzog, Ido M.; Feldman, Mark; Benhamou, Raphael I.; Steinbuch, Kfir B.; Shaul, Pazit; Lerer, Shachar; Eldar Avigdor; Fridman, Micha. Chemistry A European Journal2015, 21, 4340-4349.


24. Targeting CD38 in the Tumor Microenvironment; a Novel Approach to Treat Glioma Cancer Cell and Microenvironment. Blacher Eran; Levy Ayelet; Ben Baruch Bar; Green Keith D.; Garneau-Tsodikova Sylvie; Fridman Micha; Stein Reuven. Cancer Cell & Microenvironment, 2015, 2, e486.

23. Inhibition of Glioma Progression by a Newly Discovered CD38 Inhibitor. Blacher, Eran; Levy, Ayelet; Geva, Nurit; Green, Keith D., Sylvie, Garneau-Tsodikova, Fridman, Micha; Stein, Reuven. International Journal of Cancer2015, 136, 1422-1433.

22. Antimycobacterial Activity of DNA Intercalator Inhibitors of Mycobacterium Tuberculosis Primase DnaG. Garneau-Tsodikova, Sylvie; Gajadeera, Chathurada; Willby, Melisa; Green, Keith; Shaul, Pazit; Fridman, Micha; Posey, James; Oleg Tsodikov. Journal of Antibiotics2015, 68, 153-157.


21. Design and Synthesis of Membrane-Targeting Antibiotics: from Peptides to Aminosugar-Based Antimicrobial Cationic Amphiphiles. Herzog, Ido M.; Fridman, Micha. MedChemComm2014. 5, 1014-1026.



20. Design of Membrane Targeting Tobramycin-Based Cationic Amphiphiles with Reduced Hemolytic Activity. Herzog, Ido M.; Feldman, Mark; Eldar-Boock, Anat; Satchi-Fainaro, Ronit; Fridman, Micha. MedChemComm2013, 4, 120-124.


19. The Structure of Anthracycline Derivatives Determines Their Subcellular Localization and Cytotoxic Activity. Shaul, Pazit; Frenkel, Michael; Briner-Goldstein, Elinor; Mittleman, Leonid; Grunwald, Assaf; Ebenstein, Yuval; Tsarfati, Ilan; Fridman, Micha. ACS Medicinal Chemistry Letters, 2013, 4 (3), 323–328.


18. Di-alkylated Paromomycin Derivatives: Targeting the Membranes of Gram-Positive Pathogens that Cause Skin Infections. Berkov-Zrihen, Yifat; Herzog, Ido M.; Feldman, Mark; Sonn-Segev, Adar; Roichman, Yael; Fridman, Micha. Bio-Organic & Medicinal Chemistry2013, 4 (3), 3624–3631.


17. Synthesis and Evaluation of Hetero- and Homo-dimers of Ribosome-Targeting Antibiotics: Antimicrobial Activity, in vitro Inhibition of Translation, and Drug Resistance. Berkov-Zrihen, Yifat; Green, Keith D.; Labby, Kristin J.; Feldman, Mark; Garneau-Tsodikova, Sylvie; Fridman, Micha. Journal of Medicinal Chemistry2013, 56 (13), 5613-5625.


16. Site-Selective Displacement of Tobramycin Hydroxyls for Preparation of Antimicrobial Cationic Amphiphiles. Berkov-Zrihen, Yifat; Herzog, Ido M.; Feldman, Mark; Fridman, Micha. Organic Letters2013, 15(24), 6144-6147.



15. Acylation of Novobiocin by Carboxylic-Acid Anhydrides: Preparation and Characterization of Semi-Synthetic Novenamines. Berkov-Zrihen, Yifat; Rutenberg, Roi; Fridman, Micha. Tetrahedron2012, 68(10), 2306–2312.


14. 6"-Thioether Tobramycin Analogues: Towards Selective Targeting of Bacterial Membranes. Herzog, Ido M.; Green, Keith D.; Berkov-Zrihen, Yifat; Feldman, Mark; Vidavski, Roee R.; Eldar-Boock, Anat; Satchi-Fainaro, Ronit; Eldar, Avigdor; Garneau-Tsodikova, Sylvie; Fridman, Micha. Angewandte Chemie International Edition, 2012, 51, 5652-5656.



13. Assessment of 6'- and 6'''-N-acylation of Aminoglycosides as a Strategy to Overcome Bacterial Resistance. Shaul, Pazit; Green, Keith D.; Rutenberg, Roi; Kramer, Maria; Berkov-Zrihen, Yifat; Breiner-Goldstein, Elinor; Garneau-Tsodikova, Sylvie; Fridman, Micha. Organic & Biomolecular Chemistry2011, 9(11), 4057-4063.


12. Targeting Anthracycline Resistant Tumor Cells by Synthetic Aloe-emodin Glycosides. Breiner-Goldstein, Elinor; Evron, Zoharia; Frenkel, Michael; Cohen, Keren; Peer, Dan; Nir Meiron, Keren; Roichman, Yael; Flescher, Eliezer; Fridman, Micha. ACS Medicinal Chemistry Letters2011, 2(7), 528-531.



11. Exploring the Substrate Promiscuity of Drug-Modifying Enzymes for the Chemoenzymatic Generation of N-Acylated Aminoglycosides. Green, Keith D.; Chen, Wenjing; Houghton, Jacob L.; Fridman, Micha; Garneau-Tsodikova, Sylvie. ChemBioChem2010, 11(1), 119-126.



10. hChAT: A Tool for the Chemoenzymatic Generation of Potential Acetyl/Butyrylcholinesterase Inhibitors. Green, Keith D.; Fridman, Micha; Garneau-Tsodikova, Sylvie. ChemBioChem, 2009, 10(13), 2191-2194.


9. Using Biological Performance Similarity to Inform Disaccharide Library Design. Tanikawa, Tetsuya; Fridman, Micha; Wagner, Bridget K.; Zhu, Wenjiang; Faulk, Brian; Joseph, Isaac C.; Clemons, Paul A.; Kahne, Daniel. Journal of the American Chemical Society2009, 131(14), 5075-5083.



8. Behaviour of the azido group in crystal structure of the intermediates of aminoglycoside antibiotics. Botoshansky, Mark; Nudelman, Igor; Fridman, Micha; Belakov, Valery; Baasov, Timor*. Acta Crystallographica Section A: Foundations and Advances. 2008, 64(28), C381.


7. Chemoenzymatic Formation of Novel Aminocoumarin Antibiotics by the Enzymes CouN1 and CouN7. Fridman, Micha; Balibar, Carl J.; Kahne, Daniel; Walsh, Christopher T.; Garneau-Tsodikova, Sylvie. Biochemistry2007, 46(28), 8462-8471.


6. Characterization of Rhodosaminyl-Transfer by the AknS/AknT Glycosylation Complex and its Use in Reconstituting the Biosynthetic Pathway of Aclacinomycin A. Leimkuhler, Catherine; Fridman, Micha; Lupoli, Tania; Walker, Suzanne; Walsh, Christopher T.; Kahne, Daniel. Journal of the American Chemical Society, 2007, 29(34), 10546-10550.



5. Dual Effect of Synthetic Aminoglycosides: Antibacterial Activity Against Bacillus Anthracis and Inhibition of Anthrax Lethal Factor

Fridman, Micha; Belakhov, Valery; Lee, Lac V.; Liang, Fu-Sen; Wong, Chi-Huey; Baasov, Timor. Angewandete Chemie International Edition2005, 44(3), 447-452.

4. Branched Aminoglycosides: Biochemical Studies and Antibacterial Activity of Neomycin B Derivatives. Mairiana; Pokrovskaya, Varvara; Shallom-Shezifi, Dalia; Fridman, Micha; Belakhov, Valery; Shahar, Dina; Yaron, Sima; Baasov, Timor. Bioorganic & Medicinal Chemistry2005. 13(20), 5797-5807.



3. A New Class of Branched Aminoglycosides: Pseudo-Pentasaccharide Derivatives of Neomycin B. Fridman, Micha; Belakhov, Valery; Yaron, Sima; Baasov, Timor. Organic Letters2003, 5(20), 3575-3578.



2. One-Pot Synthesis of Glucosamine Oligosaccharides. Fridman, Micha; Solomon, Dmitry; Yogev, Shay; Baasov, Timor. Organic Letters

2002, 4(2), 281-283.



 1. A Synthetic Pentasaccharide with GTPase Activity. Solomon, Dmitry; Fridman, Micha; Zhang, Jeanwei; Baasov, Timor . Organic Letters,

 2001, 3(26), 4311-4314.



Synthesis of aminoglycosides, Berkov-Zrihen, Yifat; Fridman, Micha. Modern Synthetic Methods in Carbohydrate Chemistry: From Monosaccharides to Complex Glycoconjugates. Wiley-VCH, 2013.

Webstite background 3.tif
bottom of page